
Part II
Writing Your Own

Java Programs

 Check out the article “Weird Computer Code” (and more) online at www.dummies.
com/extras/javaprogrammingforandroiddevelopers.

http://www.dummies.com/extras/javaprogrammingforandroiddevelopers

In this part . . .
 ✓ Writing your first Java programs
 ✓ Assembling Java’s building blocks
 ✓ Changing course as your program runs

Chapter 5

An Ode to Code
In This Chapter
▶ Reading the statements in a basic Java program
▶ Writing a Java console app
▶ Understanding the boilerplate Android activity

“Hello, hello, hello, . . . hello!”

—The Three Stooges in Dizzy Detectives and other short films

T
o most people, the words Hello World form a friendly (or even sugary)
phrase. Is Hello World a song title? Is it the cheery slogan of a radio

deejay? Maybe so. But to computer programmers, the phrase Hello World has
a special meaning.

A Hello World app is the simplest program that can run in a particular
programming language or on a particular platform. Authors create Hello
World apps to show people how to start writing code for particular systems.

To help you get started with Java and Android, I devote this chapter to
explaining a few Hello World programs. The programs don’t do much. (In
fact, you might argue that they don’t do anything.) But they introduce some
basic Java concepts.

 To see Hello World apps for more than 450 different programming languages,
visit www.roesler-ac.de/wolfram/hello.htm.

http://www.roesler-ac.de/wolfram/hello.htm

110 Part II: Writing Your Own Java Programs

Examining a Standard
Oracle Java Program

Listing 5-1 is a copy of the example in Chapter 3.

Listing 5-1: A Small Java Program
package org.allyourcode.myfirstproject;

public class MyFirstJavaClass {

 /**
 * @param args
 */
 public static void main(String[] args) {
 javax.swing.JOptionPane.showMessageDialog
 (null, “Hello”);
 }

}

When you run the program in Listing 5-1, the computer displays the word
Hello in a dialog box, as shown in Figure 5-1. Now, I admit that writing and
running a Java program just to make Hello appear on a computer screen is a
lot of work, but every endeavor has to start somewhere.

Figure 5-1:
Running the
program in
Listing 5-1.

Figure 5-2 describes the meaning of the code in Listing 5-1.

The next several sections present, explain, analyze, dissect, and otherwise
demystify the Java program shown in Listing 5-1.

111 Chapter 5: An Ode to Code

Figure 5-2:
What you

do in
Listing 5-1.

The Java class
Java is an object-oriented programming language. As a Java developer,
your primary goal is to describe classes and objects. A class is a kind of
category, like the category of all customers, the category of all accounts,
the category of all geometric shapes, or, less concretely, the category of all
MyFirstJavaClass elements, as shown in Listing 5-1. Just as the listing
contains the words class MyFirstJavaClass, another piece of code to
describe accounts might contain the words class Account. The class
Account code would describe what it means to be (for example) one of
several million bank accounts.

 The previous paragraph contains a brief description of what it means to be a
class. For a more detailed description, see Chapter 9.

 You may know what js meant by the phrases “the category of all customers”
and “the category of all geometric shapes,” but you may wonder what “the
category of all MyFirstJavaClass things” means or in what sense a computer
program (such as the program in Listing 5-1) is a category. Here’s my answer
(which, I admit, is somewhat evasive): A Java program gets to be a “class” for
esoteric, technical reasons and not because thinking of a Java program as a
category always makes perfect sense. Sorry about that.

112 Part II: Writing Your Own Java Programs

Except for the first line, the entire program In Listing 5-1 is a class. When I
create a program like this one, I get to make up a name for my new class.
In the listing, I choose the name MyFirstJavaClass. That’s why the code
starts with class MyFirstJavaClass, as shown in Figure 5-3.

Figure 5-3:
A simple

Java
program

is a class.

 The code inside the larger box in Figure 5-3 is, to be painfully correct, the
declaration of a class. (This code is a class declaration.) I’m being slightly
imprecise when I write in the figure that this code is a class. In reality, this
code describes a class.

The declaration of a class has two parts: The first part is the header, and
the rest — the part surrounded by curly braces, or {} —is the class body, as
shown in Figure 5-4.

The word class is a Java keyword. No matter who writes a Java program,
class is always used in the same way. On the other hand, MyFirstJava
Class in Listing 5-1 is an identifier — a name for something (that is, a name
that identifies something). The word MyFirstJavaClass, which I made up
while I was writing Chapter 3, is the name of a particular class — the class
that I’m creating by writing this program.

In Listing 5-1, the words package, public, static, and void are also Java
keywords. No matter who writes a Java program, package and class and
the other keywords always have the same meaning. For more jabber about
keywords and identifiers, see the nearby sidebar, “Words, words, words.”

113 Chapter 5: An Ode to Code

Figure 5-4:
A class

declaration’s
header and

body.

 To find out what the words public, static, and void mean, see Chapters 9
and 10.

 tHE jAVA PROGRAMMING LANGUAGE IS cASe-sEnsITiVE. FOR EXAMPLE, iF
YOU CHANGE A lowercase LETTER IN A WORD TO UPPERCASE OR CHANGE
AN UPPERCASE WORD TO lowercase, YOU CHANGE THE WORD’S MEANING
AND CAN EVEN MAKE THE WORD MEANINGLESS. iN THE FIRST LINE OF lIST-
ING 5-1, FOR EXAMPLE, IF YOU TRIED TO REPLACE class WITH Class, THE
WHOLE PROGRAM WOULD STOP WORKING.

The same holds true, to some extent, for the name of a file containing
a particular class. For example, the name of the class in Listing 5-1 is
MyFirstJavaClass, with 4 uppercase letters and 12 lowercase letters. So
the code in the listing belongs in a file named MyFirstJavaClass.java,
with exactly 4 uppercase letters and 12 lowercase letters in front of .java.

The names of classes
I’m known by several different names. My first name, used for informal
conversation, is Barry. A longer name, used on this book’s cover, is Barry
Burd. The legal name that I use on tax forms is Barry A. Burd, and my passport
(the most official document I own) sports the name Barry Abram Burd.

In the same way, elements in a Java program have several different
names. For example, the class that’s created in Listing 5-1 has the name
MyFirstJavaClass. This is the class’s simple name because, well, it’s
simple and it’s a name.

114 Part II: Writing Your Own Java Programs

Words, words, words
The Java language uses two kinds of words: keywords and identifiers. You can tell which words
are keywords because Java has only 50 of them. Here’s the complete list:

abstract continue for new switch
assert default goto package synchronized
boolean do if private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const float native super while

As a rule, a keyword is a word whose meaning never changes (from one Java program to another).
For example, in English, you can’t change the meaning of the word if. It doesn’t make sense to
say, “I think that I shall never if / A poem lovely as a riff.” The same concept holds true in a Java
program: You can type if (x > 5) to mean “If x is greater than 5,” but when you type if (x
> if), the computer complains that the code doesn’t make sense.

In Listing 5-1, the words package, public, class, static, and void are keywords. Almost
every other word in that listing is an identifier, which is generally a name for something. The iden-
tifiers in the listing include the package name org.allyourcode.myfirstproject, the
class name MyFirstJavaClass, and a bunch of other words.

In programming lingo, words such as Wednesday, Barry, and university in the following sentence
are identifiers, and the other words (If, it’s, is, and at) are keywords:

 If it’s Wednesday, Barry is at the university.

(I’m undecided about the role of the word the. You can worry about it if you want.)

As in English and most other spoken languages, the names of items are reusable. For example,
a recent web search turns up four people in the United States named Barry Burd (with the same
uncommon spelling). You can even reuse well-known names. (A fellow student at Temple University
had the name John Wayne, and in the 1980s two different textbooks were named Pascalgorithms.)
The Android API has a prewritten class named Activity, but that doesn’t stop you from defining
another meaning for the name Activity.

Of course, having duplicate names can lead to trouble, so intentionally reusing a well-known name
is generally a bad idea. (If you create your own thing named Activity, you’ll find it difficult to
refer to the prewritten Activity class in Android. As for my fellow Temple University student,
everyone laughed when the teacher called roll.)

115 Chapter 5: An Ode to Code

Listing 5-1 begins with the line package org.allyourcode.myfirst
project. The first line is a package declaration. Because of this declaration,
the newly created MyFirstJavaClass is inside a package named org.
allyourcode.myfirstproject. So org.allyourcode.myfirst
project.MyFirstJavaClass is the class’s fully qualified name.

If you’re sitting with me in my living room, you probably call me Barry. But
if you’ve never met me and you’re looking for me in a crowd of a thousand
people, you probably call out the name Barry Burd. In the same way, the
choice between a class’s simple name and its fully qualified name depends
on the context. For more information, see the later section “An import
declaration.”

Why Java methods are like
meals at a restaurant
I’m a fly on the wall at Mom’s Restaurant in a small town along Interstate 80.
I see everything that goes on at Mom’s: Mom toils year after year, fighting
against the influx of high-volume, low-quality restaurant chains while the
old-timers remain faithful to Mom’s menu.

I see you walking into Mom’s. Look — you’re handing Mom a job application.
You’re probably a decent cook. If you get the job, you’ll get carefully typed
copies of every one of the restaurant’s recipes. Here’s one:

Scrambled eggs (serves 2)

5 large eggs, beaten
1⁄4 cup 2% milk

1 cup shredded mozzarella

Salt and pepper to taste

A pinch of garlic powder

In a medium bowl, combine eggs and milk. Whisk until the mixture is smooth,
and pour into preheated frying pan. Cook on medium heat, stirring the
mixture frequently with a spatula. Cook for 2 to 3 minutes or until eggs are
about halfway cooked. Add salt, pepper, and garlic powder. Add cheese a
little at a time, and continue stirring. Cook for another 2 to 3 minutes. Serve.

Before your first day at work, Mom sends you home to study her recipes. But
she sternly warns you not to practice cooking. “Save all your energy for your
first day,” she says.

116 Part II: Writing Your Own Java Programs

On your first day, you don an apron. Mom rotates the sign on the front door
so that the word Open faces the street. You sit quietly by the stove, tapping
four fingers in round-robin fashion. Mom sits by the cash register, trying to
look nonchalant. (After 25 years in business, she still worries that the
morning regulars won’t show up.)

At last! Here comes Joe the barber. Joe orders the breakfast special with two
scrambled eggs.

What does Mom’s Restaurant
have to do with Java?
When you drill down inside the code of a Java class, you find these two
important elements:

 ✓ Method declaration: The “recipe”

 “If anyone ever asks, here’s how to make scrambled eggs.”

 ✓ Method call: The “customer’s order”

 Joe says, “I’ll have the breakfast special with two scrambled eggs.” It’s
time for you to follow the recipe.

 Almost every computer programming language has elements akin to Java’s
methods. If you’ve worked with other languages, you may recall terms like
subprogram, procedure, function, subroutine, subprocedure, or PERFORM statement.
Whatever you call a method in your favorite programming language, it’s a
bunch of instructions, collected in one place and waiting to be executed.

Method declaration
A method declaration is a plan describing the steps that Java will take if and
when the method is called into action. A method call is one of those calls to
action. As a Java developer, you write both method declarations and method
calls. Figure 5-5 shows you the method declaration and the method call from
Listing 5-1.

 If I’m being lazy, I refer to the code in the outer box in Figure 5-5 as a method.
If I’m not being lazy, I refer to it as a method declaration.

A method declaration is a list of instructions: “Do this, then do that, and then
do this other thing.” The declaration in Listing 5-1 (and in Figure 5-5) contains
a single instruction.

To top it all off, each method has a name. In Listing 5-1, the method
declaration’s name is main. The other words — such as public, static,
and void — aren’t parts of the method declaration’s name.

117 Chapter 5: An Ode to Code

Figure 5-5:
A method

declaration
and a

method call.

 The words public, static, and void are modifiers (similar to adjectives, in
the English language). For more information about modifiers, see Chapters 9
and 10.

A method declaration has two parts: the method header (the first line) and
the method body (the rest of it, which is the part surrounded by {} — curly
braces), as shown in Figure 5-6.

Method call
A method call includes the name of the method being called, followed by
some text in parentheses. So the code in Listing 5-1 contains a single method
call:

javax.swing.JOptionPane.showMessageDialog
 (null, “Hello”)

In this code, javax.swing.JOptionPane.showMessageDialog is the
name of a method, and null, “Hello” is the text in parentheses.

A Java instruction typically ends with a semicolon, so the following is a
complete Java instruction:

javax.swing.JOptionPane.showMessageDialog
 (null, “Hello”);

118 Part II: Writing Your Own Java Programs

Figure 5-6:
A method

header and
a method

body.

This instruction tells the computer to execute whatever statements are
inside the javax.swing.JOptionPane.showMessageDialog method
declaration.

 Another term for Java instruction is Java statement, or just statement.

The names of methods
Like many elements in Java, a method has several names, ranging from the
shortest name to the longest name and with names in the middle. For
example, the code in Listing 5-1 calls a method whose simple name is
showMessageDialog.

In Java, each method lives inside a class, and showMessageDialog
lives inside the API’s JOptionPane class. So a longer name for the
showMessageDialog method is JOptionPane.showMessageDialog.

A package in Java is a collection of classes. The JOptionPane class is part
of an API package named javax.swing. So the showMessageDialog
method’s fully qualified name is javax.swing.JOptionPane.show
MessageDialog. Which version of a method’s name you use in the code
depends on the context.

 For more info on choosing between simple names and fully qualified names,
see Chapter 9.

119 Chapter 5: An Ode to Code

 In Java, a package contains classes, and a class contains methods. (A class
might contain other elements, too, but I tell you that story in Chapters 9 and
11.) A class’s fully qualified name includes a package name, followed by the
class’s simple name. A method’s fully qualified name includes a package name,
followed by a class’s simple name, followed by the method’s simple name. To
separate one part of a name from another, you use a period (or “dot”).

Method parameters
In Listing 5-1, this call displays a dialog box:

javax.swing.JOptionPane.showMessageDialog
 (null, “Hello”);

The dialog box has the word Message in its title bar and an i icon on its face.
(The letter i stands for information.) Why do you see the Message title and
the i icon? For a clue, notice the method call’s two parameters: null and
“Hello”.

The effect of the values null and “Hello” depends entirely on the instructions
inside the showMessageDialog method’s declaration. You can read these
instructions, if you want, because the entire Java API code is available for
viewing — but you probably don’t want to read the 2,600 lines of Java code in
the JOptionPane class. (I’m sure you’d rather read the CliffsNotes version.)

Here’s a brief description of the effect of the values null and “Hello” in the
showMessageDialog call’s parameter list:

 ✓ In Java, the value null stands for “nothing.”

 In particular, the first parameter null in a call to showMessageDialog
indicates that the dialog box doesn’t initially appear inside any other
window. That is, the dialog box can appear anywhere on the computer
screen. (The dialog box appears inside of “nothing” in particular on the
screen.)

 ✓ In Java, double quotation marks denote a string of characters.

 The second “Hello” parameter tells the showMessageDialog method
to display the characters Hello on the face of the dialog box.

 Even without my description of the showMessageDialog method’s parameters,
you can avoid reading the 2,600 lines of Java API code. Instead, you can
examine the indispensable Java documentation pages. You can find these
documentation pages by visiting

www.oracle.com/technetwork/java/javase/documentation

http://www.oracle.com/technetwork/java/javase/documentation

120 Part II: Writing Your Own Java Programs

The main method in a
standard Java program
Figure 5-7 shows a copy of the code from Listing 5-1 with arrows indicating
what happens when the computer runs the code. The bulk of the code
contains the declaration of a method named main.

Like any Java method, the main method is a recipe:

How to make scrambled eggs:
 Combine eggs and milk
 Whisk until smooth
 Pour into preheated frying pan
 Cook for 2 to 3 minutes while stirring the mixture
 Add salt, pepper, and garlic powder
 Add cheese a little at a time
 Cook for another 2 to 3 minutes

or

How to follow the main instructions for MyFirstJavaClass:
 Display “Hello” in a dialog box on the screen.

Figure 5-7:
It all starts

with the
main

method.

121 Chapter 5: An Ode to Code

The word main plays a special role in Java. In particular, you never write
code that explicitly calls a main method into action. The word main is the
name of the method that’s called into action when the program begins
running.

When the MyFirstJavaClass program runs, the computer automatically
finds the program’s main method and executes any instructions inside the
method’s body. In the MyFirstJavaClass program, the main method’s
body has only one instruction. That instruction tells the computer to display
Hello in a dialog box on the screen. So in Figure 5-1, Hello appears on the
computer screen.

 None of the instructions in a method is executed until the method is called
into action. But if you give a method the name main, that method is called into
action automatically.

Punctuating your code
In English, punctuation is vital. If you don’t believe me, ask this book’s copy
editor, who suffered through my rampant abuse of commas and semicolons
in the preparation of this manuscript. My apologies to her — I’ll try harder in
the next edition.

Anyway, punctuation is also important in a Java program. This list lays out a
few of Java’s punctuation rules:

 ✓ Enclose a class body in a pair of curly braces.

 In Listing 5-1, the MyFirstJavaClass body is enclosed in curly braces.

 The placement of a curly brace (at the end of a line, at the start of a
line, or on a line of its own) is unimportant. The only important aspect
of placement is consistency. The consistent placement of curly braces
throughout the code makes the code easier for you to understand. And
when you understand your own code, you write far better code. When
you compose a program, Eclipse can automatically rearrange the code
so that the placement of curly braces (and other program elements)
is consistent. To make it happen, click the mouse anywhere inside the
editor and choose Source➪Format.

 ✓ Enclose a method body in a pair of curly braces.

 In Listing 5-1, the main method’s body is enclosed in curly braces.

 ✓ A Java statement ends with a semicolon.

122 Part II: Writing Your Own Java Programs

 For example, in Listing 5-1, the call to the showMessageDialog method
ends with a semicolon.

 ✓ A declaration ends with a semicolon.

 Again in Listing 5-1, the first line of code (containing the package
declaration) ends with a semicolon.

 ✓ In spite of the previous two rules, don’t place a semicolon immediately
after a closing curly brace (}).

 Listing 5-1 ends with two closing curly braces, and neither of these
braces is followed by a semicolon.

 ✓ Use parentheses to enclose a method’s parameters, and use commas to
separate the parameters.

 In Listing 5-1 (where else?) the call to the showMessageDialog method
has two parameters: null and “Hello”. The declaration of the main
method has only one parameter: args.

 In the main method’s parameter list, the String[] thing isn’t a separate
parameter. Instead, String[] is the args parameter’s type. For more
information about types, see Chapters 6, 9 and 12.

 ✓ Use double quotation marks (“”) to denote strings of characters.

 In Listing 5-1, the “Hello” parameter tells the showMessageDialog
method to display the characters Hello on the face of the dialog box.

 ✓ Use dots to separate the parts of a qualified name.

 In the Java API, the javax.swing package contains the JOptionPane
class, which in turn contains the showMessageDialog method. So
javax.swing.JOptionPane.showMessageDialog is the method’s
fully qualified name.

 ✓ Use dots within a package name.

 The dots in a package name are a bit misleading. A package name hints
at uses for the code inside the package. But a package name doesn’t
classify packages into subpackages and sub-subpackages.

 For example, the Java API has the packages javax.swing, javax.
security.auth, javax.security.auth.login, and many others.
The word javax alone means nothing, and the javax.security.auth.
login package isn’t inside of the javax.security.auth package.

 The most blatant consequence of a package name’s dots is to determine
a file’s location on the hard drive. For example, because of its package
name, the code in Listing 5-1 must be in a folder named myfirst
project, which must be in a folder named allyourcode, which in turn
must be in a folder named org, as shown in Figure 5-8.

123 Chapter 5: An Ode to Code

Figure 5-8:
The folders

containing a
Java

program.

Comments are your friends
Listing 5-2 has an enhanced version of the code in Listing 5-1. In addition
to all the keywords, identifiers, and punctuation, Listing 5-2 has text that’s
meant for human beings (like you and me) to read.

Listing 5-2: Three Kinds of Comments
/*
 * Listing 5-2 in
 * “Java For Android Developers For Dummies”
 *
 * Copyright 2013 Wiley Publishing, Inc.
 * All rights reserved.
] */

package org.allyourcode.myfirstproject;

/**
 * MyFirstJavaClass displays a dialog box
 * on the computer screen.
 *
 * @author Barry Burd
 * @version 1.0 02/02/13
 * @see java.swing.JOptionPane
 */
public class MyFirstJavaClass {

 /**
 * The starting point of execution.
 *
 * @param args
 * (Not used.)
 */
 public static void main(String[] args) {
 javax.swing.JOptionPane.showMessageDialog
 (null, “Hello”); //null?
 }

}

124 Part II: Writing Your Own Java Programs

A comment is a special section of text inside a program whose purpose is to
help people understand the program. A comment is part of a good program’s
documentation.

The Java programming language has three kinds of comments:

 ✓ Traditional comments: The first seven lines in Listing 3-6 (over in
Chapter 3) form one traditional comment. The comment begins with /*
and ends with */. Everything between the opening /* and the closing
*/ is for human eyes only. No information about “Java For Android
Developers For Dummies” or Wiley Publishing, Inc. is
translated by the compiler.

 To read about compilers, see Chapter 1.

 Lines 2–6 in Listing 5-2 have extra asterisks (*). I call them extra because
these asterisks aren’t required when you create a comment. They only
make the comment look pretty. I include them in the listing because, for
some reason that I don’t entirely understand, most Java programmers
insist on adding these extra asterisks.

 ✓ End-of-line comments: The text //null? in Listing 5-2 is an end-of-line
comment — it starts with two slashes and goes to the end of a line of
type. Once again, the compiler doesn’t translate the text inside an
end-of-line comment.

 ✓ Javadoc comments: A javadoc comment begins with a slash and two
asterisks (/**). Listing 5-2 has two javadoc comments — one with the
text MyFirstJavaClass displays a dialog box . . . and
another with the text The starting point. . . .

 A javadoc comment is a special kind of traditional comment: It’s meant
to be read by people who never even look at the Java code.

 Wait — that doesn’t make sense. How can you see the javadoc comments
in Listing 5-2 if you never look at the listing?

 Well, with a few points and clicks, you can find all the javadoc comments
in Listing 5-2 and turn them into a nice-looking web page, as shown in
Figure 5-9.

To make documentation pages for your own code, follow these steps:

 1. Put Javadoc comments in your code.

 2. From the main menu in Eclipse, choose Project➪Generate Javadoc.

 As a result, the Javadoc Generation dialog box appears.

 3. In the Javadoc Generation dialog box, select the Eclipse project whose
code you want to document.

125 Chapter 5: An Ode to Code

Figure 5-9:
Javadoc

comments,
generated

from the
code in

Listing 5-2.

 4. Still in the Javadoc Generation dialog box, notice the name of the
folder in the Destination field.

 The computer puts the newly created documentation pages in that
folder. If you prefer a different folder, you can change the folder name in
this Destination field.

 5. Click Finish.

 As a result, the computer creates the documentation pages.

126 Part II: Writing Your Own Java Programs

If you visit the Destination folder and double-click the new index.html file’s
icon, you see your beautiful (and informative) documentation pages.

 You can find the documentation pages for Java’s built-in API classes by
visiting www.oracle.com/technetwork/java/javase/documentation.
Java’s API contains thousands of classes, so don’t memorize the names of the
classes and their methods. Instead, you simply visit these online documentation
pages.

What’s Barry’s excuse?
For years, I’ve been telling my students to put all kinds of comments in their
code, and for years, I’ve been creating sample code (such as the code in
Listing 5-1) containing few comments. Why?

Three little words: “Know your audience.” When you write complicated,
real-life code, your audience consists of other programmers, information
technology managers, and people who need help deciphering what you’ve
done. But when I write simple samples of code for this book, my audience is
you — the novice Java programmer. Rather than read my comments, your
best strategy is to stare at my Java statements — the statements that Java’s
compiler deciphers. That’s why I put so few comments in this book’s listings.

Besides, I’m a little lazy.

Another One-Line Method
Listing 5-3 contains another Hello World program. In fact, the code in Listing
5-3 is a bit simpler than the program in Listing 5-1.

Listing 5-3: A Console-Based Hello World Program
package com.allmycode.hello;

public class HelloText {

 public static void main(String[] args) {
 System.out.println(“Hello”);
 }

}

In Listing 5-3, the method call System.out.println(“Hello”) sends
text to the Console view in Eclipse, as shown in Figure 5-10. Sending text to
the Console is dull, dull, dull. But when you’re writing code, a new program

http://www.oracle.com/technetwork/java/javase/documentation

127 Chapter 5: An Ode to Code

often doesn’t do what you think it should do. And adding a quick System.
out.println call to the program helps you understand how the program
behaves behind the scenes.

Figure 5-10:
The Console

view in
Eclipse.

 For concrete examples in which I use System.out.println to diagnose a
program’s behavior, see Chapter 13.

More Java Methods
To move beyond the rock-bottom simplicity of Listings 5-1 and 5-3, the code
in Listing 5-4 mixes a few method declarations and a few method calls.

Listing 5-4: A Goodbye World Program
package com.allmycode.games;

import javax.swing.JOptionPane;

public class CountLives {

 public static void main(String[] args) {
 countdown();
 }

 static void countdown() {
 JOptionPane.showMessageDialog(null,
 “You have 2 more lives.”, “The Game”,
 JOptionPane.INFORMATION_MESSAGE);
 JOptionPane.showMessageDialog(null,
 „You have 1 more life.“, „The Game“,
 JOptionPane.WARNING_MESSAGE);
 JOptionPane.showMessageDialog(null,
 „You have no more lives.“, „The Game“,
 JOptionPane.ERROR_MESSAGE);
 }

}

128 Part II: Writing Your Own Java Programs

Figures 5-11, 5-12, and 5-13 show a complete run of the code shown in
Listing 5-4.]

Figure 5-11:
The

INFORMATION
_MESSAGE

from the
first show
Message

Dialog call.

Figure 5-12:
The

WARNING_
MESSAGE

from the
second

show
Message

Dialog call.

Figure 5-13:
The ERROR_

MESSAGE
from the

third show
Message

Dialog call.

Figure 5-14 gives a more schematic overview of what happens when the
computer runs the code shown in Listing 5-4. The main method calls the
countdown method, which in turn calls Java’s showMessageDialog method
three times.

129 Chapter 5: An Ode to Code

Using an import declaration
Compare the showMessageDialog calls in Listings 5-1 and 5-4. In Listing 5-1,
you use the fully qualified name javax.swing.JOptionPane.showMessage
Dialog, but in Listing 5-4, you use the simpler name JOptionPane.
showMessageDialog. What’s this all about?

The answer is near the top of Listing 5-4. In that listing, you see the line

import javax.swing.JOptionPane;

This line, which announces that you intend to use the short name
JOptionPane later in the listing’s code, clarifies what you mean by
JOptionPane. (You mean javax.swing.JOptionPane.) After having
announced your intention in this import declaration, you can use the short
name JOptionPane in the rest of the CountLives class code.

Figure 5-14:
Going with

the flow.

If you don’t insert an import declaration at the top of the Java code file, you
have to repeat the full javax.swing.JOptionPane name wherever you use
the name JOptionPane in your code. (Refer to Listing 5-1.)

130 Part II: Writing Your Own Java Programs

 The details of this import business can be nasty, but (fortunately) many IDEs
have features to help you write import declarations. For example, in Eclipse,
you can avoid typing import declarations. You can quickly compose code
using the shorter JOptionPane.showMessageDialog name. Then from the
main menu in Eclipse, choose Source➪Organize Imports. When you do this,
Eclipse adds the missing import declarations on your behalf.

More method parameters
Compare the showMessageDialog calls in Listings 5-1 and 5-4. The call in
Listing 5-1 has two parameters, but each call in Listing 5-4 has four param-
eters. This is okay because the Java API contains at least two different
showMessageDialog declarations — one with two parameters:

public static void showMessageDialog
 (Component parentComponent, Object message) {
// . . . etc.

And another with four parameters:

public static void showMessageDialog
 (Component parentComponent, Object message,
 String title, int messageType) {
// . . . etc.

This example demonstrates method overloading. The Java API overloads
the method name showMessageDialog by creating two (or more) ways to
call showMessageDialog. A call with two parameters refers to one method
declaration, and a call with four parameters refers to another declaration,
as shown in Figure 5-15. The computer decides which method declaration to
invoke by counting the parameters in the method call (and by checking other
elements, as described in Chapter 7).

Here’s what happens in the four-parameter version of showMessageDialog:

 ✓ If the first parameter is null, the dialog box doesn’t initially appear
inside any other window.

 This parameter serves the same purpose as the first parameter in the
two-parameter showMessageDialog method.

 ✓ The second parameter tells the showMessageDialog method which
characters to display on the face of the dialog box.

 This parameter serves the same purpose as the second parameter in the
two-parameter showMessageDialog method.

131 Chapter 5: An Ode to Code

Figure 5-15:
Parameters

in the call
match up

with param-
eters in the

declaration.

 ✓ The third parameter tells the showMessageDialog method which
characters to display on the title bar of the dialog box.

 In Listing 5-4 (and back in Figures 5-11, 5-12, and 5-13), the title bar in
every dialog box contains the words The Game.

 ✓ The fourth parameter tells the showMessageDialog which icon to
display on the face of the dialog box.

 Figures 5-11, 5-12, and 5-13 show three of the five icons that may appear
with a call to showMessageDialog. The remaining two possibilities
are the question-mark icon (with the JOptionPane.QUESTION_
MESSAGE parameter) and no icon (with the JOptionPane.
PLAIN_MESSAGE parameter).

 The showMessageDialog method calls in Listing 5-4 illustrate a point from
the “R.java and the legend of the two vaudevillians” sidebar in Chapter 4,
where the words View.VISIBLE, View.INVISIBLE, and View.GONE stand
for the numbers 0, 4, and 8, respectively. Android uses these three numbers
to represent different levels of screen visibility. In the same way, the names
JOptionPane.ERROR_MESSAGE, JOptionPane.INFORMATION_MESSAGE,
and JOptionPane.WARNING_MESSAGE stand for the numbers 0, 1, and 2.
The statements inside the declaration of the showOptionPane message
respond to each of these numbers by displaying a different icon.

132 Part II: Writing Your Own Java Programs

Fewer method parameters
Another story about method parameters in Listing 5-4 begs to be told. In
Listing 5-4 I call a method named countdown, and in the same class I declare
my new countdown method.

 When you call a method that’s declared in the same class, you can use the
method’s simple name. It’s the same way in real life. No one in my family calls
me Barry Burd at home (unless they’re really angry with me).

You may remember how the computer counts a method call’s parameters
and matches this with the number of parameters in the method’s declaration.
In Listing 5-4, the countdown call has no parameters (only an empty pair of
parentheses) and the countdown method’s declaration has the same number
of parameters; namely, none. So the call and the declaration are compatible,
and the computer executes the declaration’s instructions.

 To declare (or to call) a method with no parameters, use an empty pair of
parentheses.

Hello, Android
An Android project’s src directory contains your project’s Java source
code. Files in this directory have names such as MainActivity.java,
MyService.java, DatabaseHelper.java, and MoreStuff.java.

You can cram hundreds of Java files into an Android project’s src directory.
But when you create a new project, Eclipse typically creates just one file for
you. By default, Android creates a file named MainActivity.java. Listing
5-5 shows you the code in the MainActivity.java file.

Listing 5-5: Android Creates This Skeletal Activity Class
package com.allmycode.myfirstandroidapp;

import android.os.Bundle;
import android.app.Activity;
import android.view.Menu;

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

133 Chapter 5: An Ode to Code

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the
 // action bar if it is present.
 getMenuInflater().inflate(R.menu.activity_main, menu);
 return true;
 }

}

Where’s the main method?
To start the run of a standard Java program, the computer looks for a
method named main. But the code in Listing 5-5 has no main method. Okay,
I give up — how does a smartphone find the starting point of execution in an
Android app?

The answer involves an app’s XML code. You can build a standard Java
program with Java code alone, but an Android app needs additional code. For
one thing, every Android app needs its own AndroidManifest.xml file.

 Chapter 4 describes an AndroidManifest.xml file.

Listing 5-6 contains a snippet of code from an AndroidManifest.xml file.
(The code that I set in boldface is the most interesting code. The code that’s
not set in boldface isn’t uninteresting. It’s simply less interesting.)

Listing 5-6: The activity Element in an AndroidManifest.xml File
<activity
 android:name=
 “com.allmycode.myfirstandroidapp.MainActivity”
 android:label=”@string/app_name” >
 <intent-filter>
 <action android:name=
 “android.intent.action.MAIN” />

 <category android:name=
 “android.intent.category.LAUNCHER” />
 </intent-filter>
</activity>

And here’s what the code in Listing 5-6 “says” to your Android device:

 ✓ The code’s action element indicates that the program that’s set
forth in Listing 5-5 (the com.allmycode.myfirstandroidapp.
MainActivity class) is MAIN.

134 Part II: Writing Your Own Java Programs

 That is, the program in Listing 5-5 is the starting point of an app’s
execution. In response to this, your Android device reaches back inside
the listing and executes the listing’s onCreate method, onCreate
OptionsMenu method, and several other methods that don’t appear
there.

 ✓ The code’s category element adds an icon to the device’s Application
Launcher screen.

 On most Android devices, the user sees the Home screen. Then, by
touching one element or another on the Home screen, the user gets to
see the Launcher screen, which contains several apps’ icons. By scrolling
this screen, the user can find an appropriate app’s icon. When the user
taps the icon, the app starts running.

 In Listing 5-6, the category element’s LAUNCHER value makes an icon for
running com.allmycode.myfirstandroidapp.MainActivity (the
Java program in Listing 5-5) available on the device’s Launcher screen.

So there you have it. With the proper secret sauce (namely, the action and
category elements in the AndroidManifest.xml file), an Android program’s
onCreate and onCreateOptionsMenu methods become the program’s
starting points of execution.

Extending a class
In Listing 5-5, the words extends and @Override tell an important story —
a story that applies to all Java programs, not only to Android apps. The
words extends and @Override tell the story of a class in the Android API.
The API’s android.app.Activity class forms the basis of all Android
applications.

In Android developer lingo, an activity is one “screenful” of components. Each
Android application can contain many activities. For example, an app’s initial
activity might list the films playing in your neighborhood. When you click a
film’s title, Android covers the entire list activity with another activity (perhaps
an activity displaying a relevant film review).

When you extend the android.app.Activity class, you create a new
kind of Android activity. In Listing 5-5, the words extends Activity tells
the computer that a MainActivity is, in fact, an example of an Android
Activity. That’s good because the folks at Google have already written
more than 5,000 lines of Java code to describe what an Android Activity
can do. Being an example of an Activity in Android means that you can
take advantage of all its prewritten code.

 When you extend an existing Java class (such as the Activity class), you
create a new class with the existing class’s functionality. For details of this
important concept, see Chapter 10.

135 Chapter 5: An Ode to Code

Overriding methods
In Listing 5-5, a MainActivity is a kind of Android Activity. So a
MainActivity is automatically a screenful of components with lots and lots
of handy, prewritten code.

Of course, in some apps, you might not want all that prewritten code. After
all, being a Republican or a Democrat doesn’t mean believing everything in
your party’s platform. You can start by borrowing most of the platform’s
principles but then pick and choose among the remaining principles. In the
same way, the code in Listing 5-5 declares itself to be an Android Activity,
but then overrides two of the Activity class’s existing methods.

In Listing 5-5, the word @Override indicates that the listing doesn’t use the
API’s prewritten onCreate and onCreateOptionsMenu methods. Instead,
the new MainActivity contains declarations for its own onCreate and
onCreateOptionsMenu methods, as shown in Figure 5-16.

Figure 5-16:
I don’t

like the
prewritten

onCreate
and

OnCreate
Options

Menu
methods.

In particular, Listing 5-5’s onCreate method calls setContentView(R.
layout.activity_main), which displays the material described in the
res/layout/activity_main.xml file (the buttons and the text fields, for
example) on the screen.

 For an introduction to the res/layout/activity_main.xml file, see
Chapter 4.

136 Part II: Writing Your Own Java Programs

The other method in Listing 5-5 (the onCreateOptionsMenu method) does
a similar trick with the res/menu/activity_main.xml file to display items
on the app’s Action bar.

An activity’s workhorse methods
Every Android activity has a lifecycle — a set of stages that the activity
undergoes from birth to death to rebirth, and so on. In particular, when your
phone launches an activity, the phone calls the activity’s onCreate method.
The phone also calls the activity’s onStart and onResume methods.

In Listing 5-5, I choose to declare my own onCreate method, but I don’t
bother declaring my own onStart and onResume methods. Rather than
override the onStart and onResume methods, I silently use the Activity
class’s prewritten onStart and onResume methods.

 To find out why you’d choose to override onResume, see Chapter 14.

When your phone ends an activity’s run, the phone calls three additional
methods: the activity’s onPause, onStop, and onDestroy methods. So one
complete sweep of your activity, from birth to death, involves the run of at
least six methods — onCreate, then onStart, and then onResume, and
later onPause, and then onStop, and, finally, onDestroy. As it is with all life
forms, “ashes to ashes, dust to dust.”

Don’t despair. For an Android activity, reincarnation is a common phenomenon.
For example, if you’re running several apps at a time, the phone might run
low on memory. In this case, Android can kill some running activities. As
the phone’s user, you have no idea that any activities have been destroyed.
When you navigate back to a killed activity, Android re-creates the activity
for you and you’re none the wiser.

Here’s another surprising fact. When you turn a phone from Portrait mode to
Landscape mode, the phone destroys the current activity (the activity that’s
in Portrait mode) and re-creates that activity in Landscape mode. The phone
calls all six of the activity’s lifecycle methods (onPause, onStop, and so on)
in order to turn the activity’s display sideways. It’s similar to starting on the
transporter deck of the Enterprise and being a different person after being
beamed down to the planet (except that you act like yourself and think like
yourself, so no one knows that you’re a completely different person).

Indeed, methods like onCreate and onCreateOptionsMenu in Listing 5-5
are the workhorses of Android development.

